MEGMEET

MV800L Series AC Drive for Cranes

Power Solutions

Telecom Power
Server Power
Electric Power
Medical Power
Display Power
LED Power
Bi-directional Inverters for Portable Power
Solar & BESS & EV Charging Solution

Industry Automation

🗌 Servo System	🗌 Control System	🗌 Elevator Controller 🗌 Linear Motors	IOT Solution	Encoder
Variable Frequence	cy Drive	🗆 Internal Gear Pump		

New Energy Solutions

Multiplexed EV Charging System(OBC & DC-DC)
Power Electronic Unit(2-in-1, 3-in-1)
E-Compressor
TV EDU
Motor Control Unit
Construction Machinery Controller
Intelligent Active Hydraulic Suspension (i-AHS)
Railway A/C Controller
Railway VFD
Light Electric Vehicle Controller
Thermal Mgmt. System

Home Appliance Control Solutions

Residential A/C Controller
Vehicle A/C Controller
Refrigerator Controller
Industrial Microwave
Smart Bidet

Precision Connection

□ FFC

FPC Coaxial Cable

CCS

□ Litz Wire □ Peek Wire

SHENZHEN MEGMEET ELECTRICAL CO., LTD.

Add: 5th Floor, Block B, Unisplendour Information Harbor, Langshan Rd., Science & Technology Park, Nanshan District, Shenzhen, 518057, China

Version: 202502 Meameet reserves the right to modify

Megmeet reserves the right to modify the technical parameters and appearance of the products in this catalogue without prior advice to the users.

FOLLOW US

Q Megmeet

Heat Pump Controller

Residential Microwave

RF Thawing System

Mini Compressor Controller

Global Leading Solution Provider In Electrical Automation

ABOUT MEGMEET

MEGMEET is a comprehensive solution provider for hardware and software R&D, production, sales, and service in the field of electrical automation. With power electronics and automation control at its core, MEGMEET's main businesses include Power Solutions, Industrial Automation, New Energy Solutions, Intelligent Equipment, Home Appliance Control Solutions, and Precision Connection.

MEGMEET has established a robust R&D, manufacturing, marketing, and service platform, with over 7,600 employees worldwide. MEGMEET's global presence includes R&D Centers in China, Germany, and the United States; Manufacturing Centers in Thailand, India, and China; and Regional Offices across North America, Europe, and Asia.

MEGMEET is committed to creating a cleaner living environment for all human beings through more efficient energy utilization and improved manufacturing efficiency. MEGMEET aims to become the world leader in electrical automation and achieve the goal of MEGMEET EVERYWHERE.

Sustainable R&D Investment

Patents & Industry Standards

R&D Employees >2800 ≙≡

R&D Investment

No. of Patents & IP Rights 1990+

150+ new in 2023

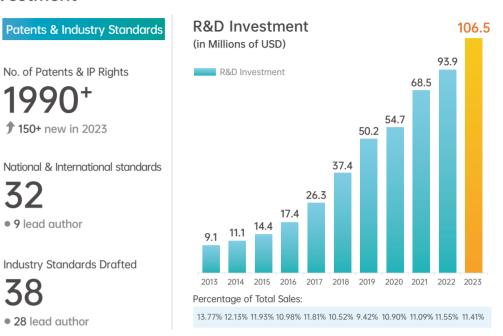
Percentage of Total Employees **36%** (C)

32

• 9 lead author

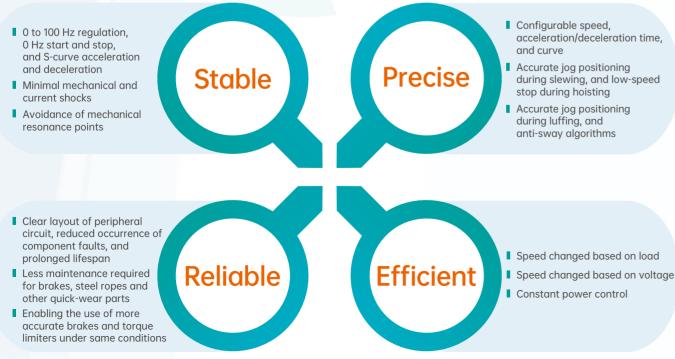
Percentage of Total Sales >11% 🗠

Industry Standards Drafted 38


• 28 lead author

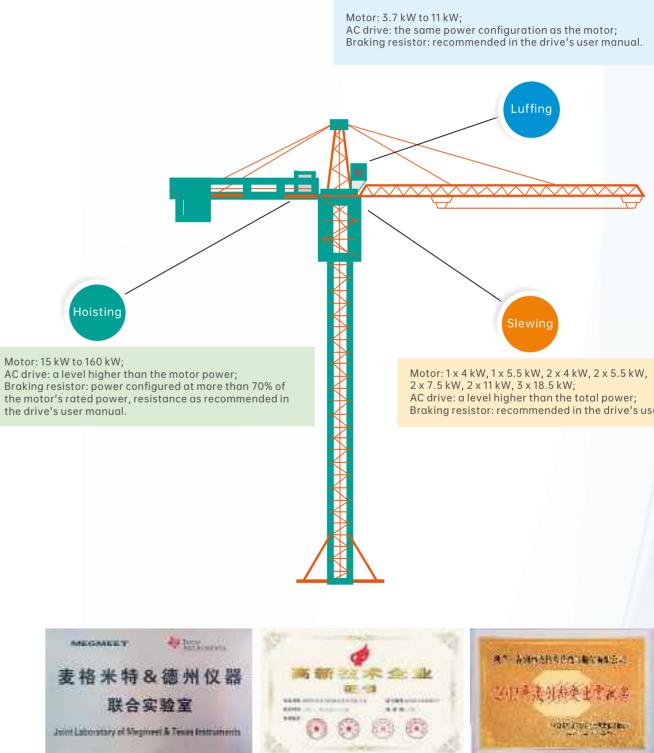
Testing Capabilities & Management System

MEGMEET's testing capabilities and management system have been certified by CNAS, TUV, UL-WTDP, & UL-CTF. MEGMEET's test results are recognized globally.



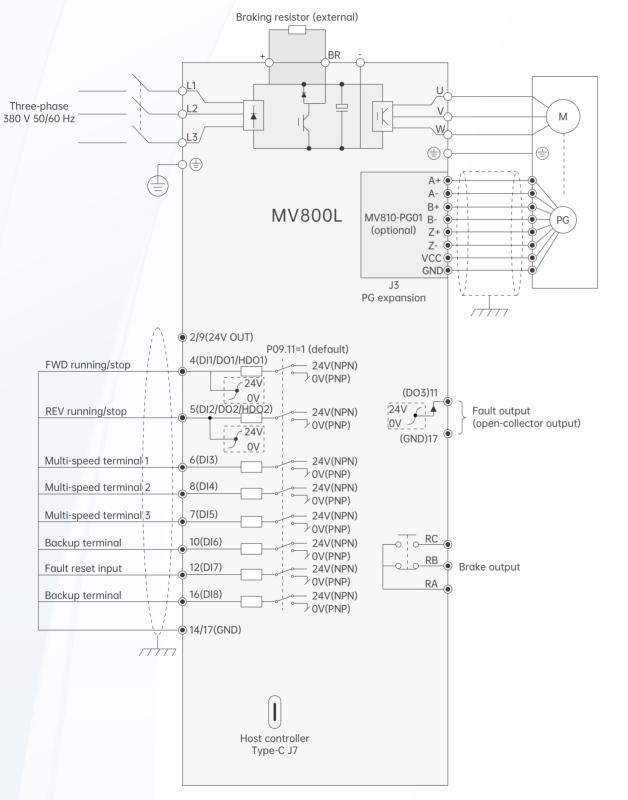
MV800L Series AC Drive for Cranes

MV800L is an industry-specific AC drive developed to meet the special requirements of the crane market.


Safety is paramount in the lifting industry. As a key part in the drive system, MV800L has been thoroughly designed and verified for safety in aspects such as component selection, redundancy design, logic design, and fault protection. Unlike drives that are used in factories, the drive for cranes is often exposed to harsh environments outdoors, such as power grid fluctuations, lightning strikes, extreme weather, vibration and transportation, which entails durability and reliability. Considering this, we reinforced the drive's ability to resist humidity, salt mist corrosion, power grid undervoltage, phase loss, lightning, vibration and misoperation. And also, standing in the shoes of users, Megmeet further simplifies the use and maintenance of drive, by defining clearly the logic patterns in different modes, default drive parameters and frequently-used motor parameters at the software level, and removing some functions that are hardly used in the industry.

Drive Solution for Tower Cranes

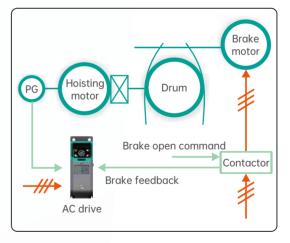
As the main tool for transporting materials and components in building construction, the tower crane consists of three parts: metal structure, working mechanism, and electrical system. The application of frequency control technology makes tower cranes safer and more efficient, with less maintenance required. In the below example, a tower crane is illustrated that uses frequency control for all its three mechanisms: luffing, slewing, and hoisting.



Chinese national high-tech enterprise certification, joint laboratory with Texas Instruments and cooperation with Zoomlion

Braking resistor: recommended in the drive's user manual.

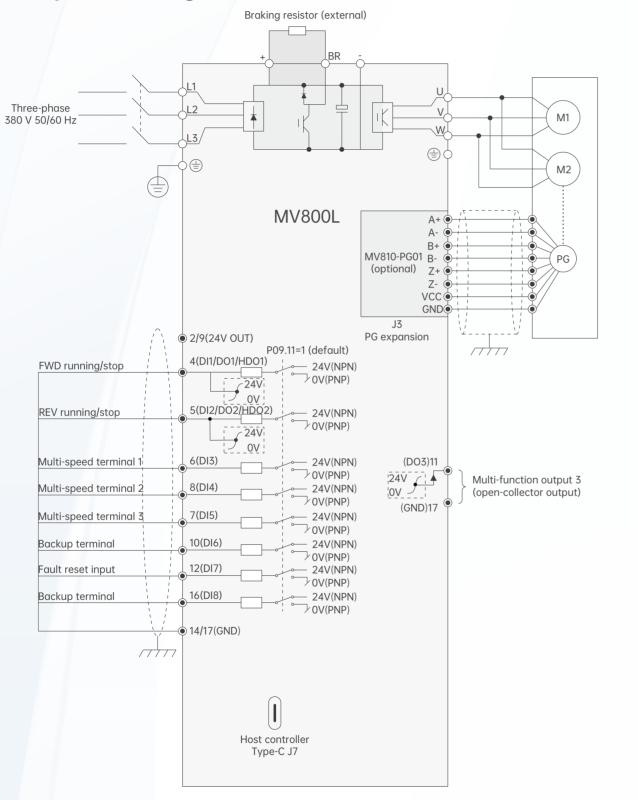
Hoisting Mechanism


System wiring

Parameter setting

Closed-loop hoisting mode						
Function code	Value	Meaning				
P00.09	200	Closed-loop hoisting mode				
P02.00	3	Closed-loop vector				
P02.05	5	Multi-speed control				
P02.13	10	Acc. time				
P02.14	12	Dec. time				
P02.11	100	Max. frequency				
P02.09	8.00 Hz	Multi-speed 0				
P13.02	8%	Multi-speed 1				
P13.03	15%	Multi-speed 2				
P13.04	30%	Multi-speed 3				
P13.05	50%	Multi-speed 4				
P13.06	100%	Multi-speed 5				
P04.00	1024	PG pulses				
P04.02	0	PG direction				

Brake control diagram for hoisting


Unique features

- Automatic detection of uncontrolled hook fall and intelligent lowering of the load to the ground at a safe low speed
- Speed changed based on the load, improving motor efficiency
- Speed changed based on the voltage, allowing the input voltage to be as low as 290 VAC
- Automatic detection by the mechanical brake and electrical system, ensuring system safety
- Fully-fledged fault protection and classification mechanism, ensuring quick protection in case of severe faults and gradual deceleration to a stop in case of non-severe faults
- Load loss detection, ensuring timely protection when output issues occur
- One-key switching among open loop vector, closed loop vector, and open loop V/F, allowing for quick on-site troubleshooting
- Dynamic password protection for customer parameters

Closed-loop hoisting mode							
Terminal	Function code	Value	Meaning				
DI1	P09.03	1	FWD				
DI2	P09.04	2	REV				
DI3	P09.05	6	Multi-speed terminal 1				
DI4	P09.06	7	Multi-speed terminal 2				
DI5	P09.07	8	Multi-speed terminal 3				
DI6	P09.08	0	Not defined				
DI7	P09.09	22	Fault reset input				
DI8	P09.10	0	Not defined				
DO3	P10.02	18	Fault output				
RA/RB/RC	P10.03	48	Brake output				

Slewing Mechanism

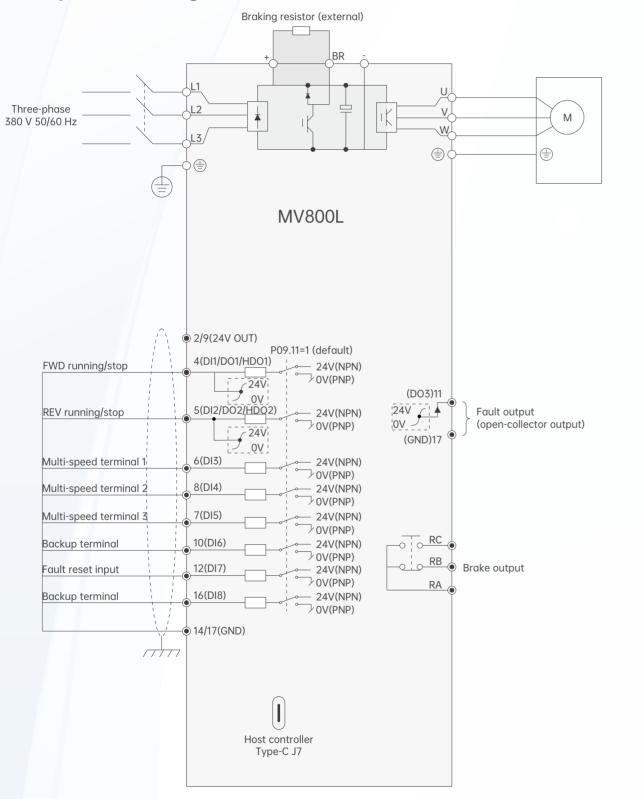
System wiring

Parameter setting

Slewing mode						
Function code	Value	Meaning				
P00.09	0	Slewing mode				
P02.00	3	Open-loop vector				
P02.05	5	Multi-speed control				
P02.13	3	Acc. time				
P02.14	6	Dec. time				
P02.11	50	Max. frequency				
P02.09	8.00 Hz	Multi-speed 0				
P13.02	30%	Multi-speed 1				
P13.03	50%	Multi-speed 2				
P13.04	70%	Multi-speed 3				
P13.05	90%	Multi-speed 4				

Eddy current control diagram for slewing

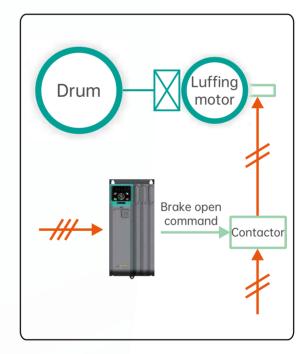
Unique features


- Innovative eddy current control technology
- Speed changed based on the voltage, allowing the input voltage to be as low as 290 VAC
- Speed changed based on the load, improving motor efficiency
- Cutting-edge non-eddy current large inertia control technology
- Built-in "foolproof" parameters and redundant calculations within the AC drive, allowing for operation without the need to set many parameters
- Dynamic password protection for customer parameters

	Slewing mode								
Terminal	Function code	on code Value Meaning							
DI1	P09.03	1	FWD						
DI2	P09.04	2	REV						
DI3	P09.05	6	Multi-speed terminal 1						
DI4	P09.06	7	Multi-speed terminal 2						
DI5	P09.07	8	Multi-speed terminal 3						
DI6	P09.08	0	Not defined						
DI7	P09.09	22	Fault reset input						
DI8	P09.10	0	Not defined						

Multiple flexible vector algorithms integrated in one drive, ensuring low-frequency high torque and stable control of large inertia

Luffing Mechanism


System wiring

Parameter setting

Luffing mode						
Function code	Value	Meaning				
P00.09	100	Luffing mode				
P02.00	2	V/F				
P02.05	5	Multi-speed control				
P02.13	5	Acc. time				
P02.14	5	Dec. time				
P02.11	50	Max. frequency				
P02.09	8.00 Hz	Multi-speed 0				
P13.02	30%	Multi-speed 1				
P13.03	50%	Multi-speed 2				
P13.04	70%	Multi-speed 3				
P13.05	100%	Multi-speed 4				

Brake control diagram for luffing

Unique features

- Anti-sway algorithms for the trolley travelling mechanism
- Speed changed based on the voltage, allowing the input voltage to be as low as 290 VAC
- Speed changed based on the load, improving motor efficiency
- Fully-fledged fault protection and classification mechanism, ensuring quick protection in case of severe faults and gradual deceleration to a stop in case of non-severe faults
- One-key switching between open loop vector and open loop V/F, allowing for quick on-site troubleshooting
- Dynamic password protection for customer parameters

	Luffing mode							
Terminal	Function code	Value	Meaning					
DI1	P09.03	1	FWD					
DI2	P09.04	2	REV					
DI3	P09.05	6	Multi-speed terminal 1					
DI4	P09.06	7	Multi-speed terminal 2					
DI5	P09.07	8	Multi-speed terminal 3					
DI6	P09.08	0	Not defined					
DI7	P09.09	22	Fault reset input					
DI8	P09.10	0	Not defined					
DO3	P10.02	18	Fault output					
RA/RB/RC	P10.03	48	Brake output					

Naming Rule

Enclosure	Product model	Rated input current (A)	Rated output current (A)	Rated output power (kW)	Fan's air volume (m³/min)
P	MV800L-4T2.2B	5.8	5.6	2.2	0.48
В	MV800L-4T3.7B	10.5	9.4	3.7	0.48
	MV800L-4T5.5B	14.5	13.0	5.5	0.80
С	MV800L-4T7.5B	20.5	17.0	7.5	0.80
D	MV800L-4T11B	26.0	25.0	11.0	1.8
D	MV800L-4T15B	35.0	32.0	15.0	1.8
E	MV800L-4T18.5B	49.0	37.0	18.5	4.0
E	MV800L-4T22B	58.0	45.0	22.0	4.0
F	MV800L-4T30B	62.0	60.0	30.0	5.8
F	MV800L-4T37B	76.0	75.0	37.0	5.8
	MV800L-4T45B	92.0	90.0	45.0	14.42
G	MV800L-4T55B	113.0	110.0	55.0	14.42
	MV800L-4T75B	157.0	152.0	75.0	14.42
н	MV800L-4T90B	180.0	176.0	90.0	14.42
п	MV800L-4T110B	214.0	210.0	110.0	14.42
	MV800L-4T132	256.0	253.0	132.0	21.48
1	MV800L-4T160	307.0	304.0	160.0	21.48
	MV800L-4T185	330.0	340.0	185.0	21.48
J	MV800L-4T200	368.0	380.0	200.0	21.48
	MV800L-4T220	410.0	426.0	220.0	21.48

P11 MV800L Series AC Drive for Cranes

Technical Specifications

	Input and
Rated voltage (V)	Three-phase: 380 V to 480 V; vo transient fluctuation -15% to +10 distortion rate compliant with IB
Rated frequency (Hz)	50 Hz / 60 Hz, fluctuation range
Rated voltage (V)	Three-phase output under rated deviation less than ±3%
Output frequency (Hz)	0 to 650 Hz, unit: 0.01 Hz
Overload capacity	1 min for 150% rated current, 0.
	Running
Control mode	Flux vector control without PG,
Speed regulation range	1:200 (flux vector control without
Speed control accuracy	±0.2% (flux vector control witho
Speed fluctuation	±0.3% (flux vector control witho
Torque response	< 5 ms (flux vector control with
Torque control	Torque control accuracy 7.5% fo
Startup control	0 Hz 150% (flux vector control v
Major functions	Brake logic control, speed chan detection, overspeed detection, overtorque/undertorque detect acceleration/deceleration time acceleration/deceleration, slip o three-location switching, Modbu torque and speed mode switchi
	Industry-spec
Major functions	Slewing mode: multi-motor flex Luffing mode: built-in brake rele Closed-loop hoisting mode: buil Open-loop hoisting mode: built-
Motor parameter	Typical motor parameters are a
One-key restoration	All changed function codes can
	Protection
Drive protection	Overcurrent, overvoltage, short overheat, encoder failure, etc.
Brake mechanism fault	Er.bCF, Er.bSF, Er.FbL, Er.Fbr
Safety protection	Speed deviation protection, ove
	Enviror
Cooling method	Forced cooling
Operating site	Indoors, away from direct sunlig water vapor, water dripping or
Altitude	Normal use below 1000 m; dera derated by 1% for every increas
Ambient temperature	-10°C to +40°C (derating require
Humidity	5% to 95% RH, non-condensing
Vibration	Less than 5.9 m/s ² (0.6 g)
Storage temperature	-40°C to +70°C
Efficiency	≥ 93% for 7.5 kW and below; ≥
Installation method	Wall-mounted
installation method	wuirmounted

d output

voltage continuous fluctuation ±10%, 10%, that is, 323 V to 528 V; voltage unbalance rate < 3%, IEC 61800-2

je ±5%

ed input conditions, 0 to rated input voltage,

.5 s for 200% rated current

control

flux vector control with PG, V/F, V/F with PG

out PG); 1:1000 (flux vector control with PG)

out PG); ±0.02% (flux vector control with PG)

out PG); ±0.1% (flux vector control with PG)

nout PG); <10 ms (flux vector control with PG)

for flux vector without PG; 5% for flux vector with PG

without PG); 0 Hz 200% (flux vector control with PG)

nged based on the load or the voltage, load loss n, brake reliability detection, torque limit, tion, multi-speed running, multiple e switching, auto-tuning, S-curve

compensation, fan speed control, jump frequency, ous communication, droop control, torque control, hing, DC braking, dynamic braking, and so on

cific features

xible vector control; built-in eddy current control signal lease/close logic; speed changed based on the load ilt-in brake release/close logic; speed changed based on the load t-in brake release/close logic; speed changed based on the load

already written into the function code P00.05

n be saved, and can be restored by one key

functions

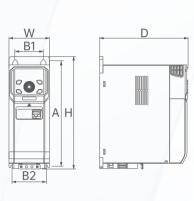
rt circuit, AC drive/motor overload, input/output phase loss,

verspeed protection, load loss protection

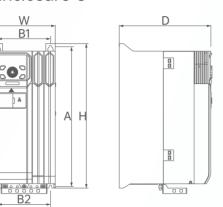
nment

light, free from dust, corrosive gas, combustible gas, oil mist, r salt, etc.

ating required above 1000 m, and use of 100 m

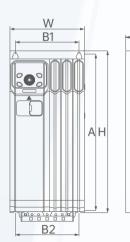

red when ambient temperature is 40°C to 50°C)

J


≥ 93% for 45 kW and below; ≥ 98% for 55 kW and above

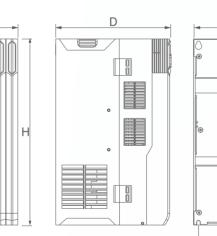
Product Dimensions

Enclosure B


Enclosure C

Enclosure	Drive model	A (mm)	B1 (mm)	B2 (mm)	H (mm)	W (mm)	D (mm)	Mounting hole diameter (mm)
В	MV800L-4T2.2B MV800L-4T3.7B	187.5	50	61	200	72	158.5	4.5
С	MV800L-4T5.5B MV800L-4T7.5B	259	97.5	97.5	267	115	171	5

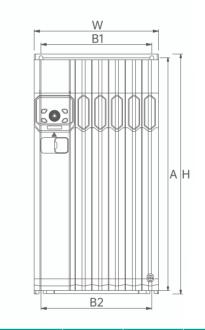
Enclosure D


D

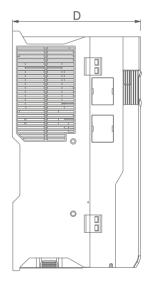
Enclosure E

W

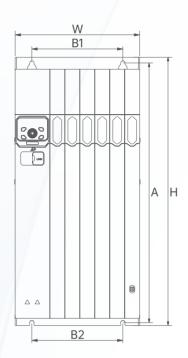
30

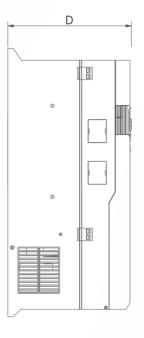


B1

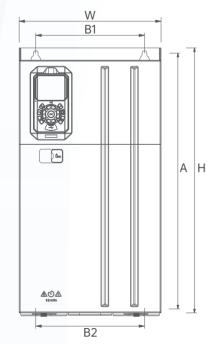

B2

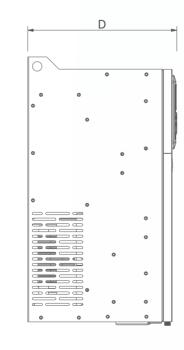
Enclosure	Drive model	A (mm)	B1 (mm)	B2 (mm)	H (mm)	W (mm)	D (mm)	Mounting hole diameter (mm)
D	MV800L-4T11B MV800L-4T15B	290	118	118	300	138	195.92	6
E	MV800L-4T18.5B MV800L-4T22B	318	140	140	330	158	204.8	6


Enclosure F

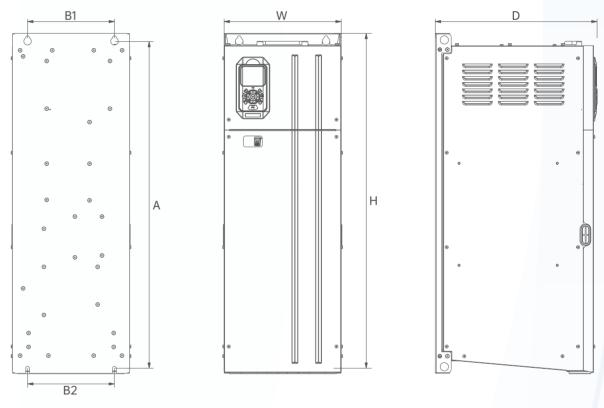


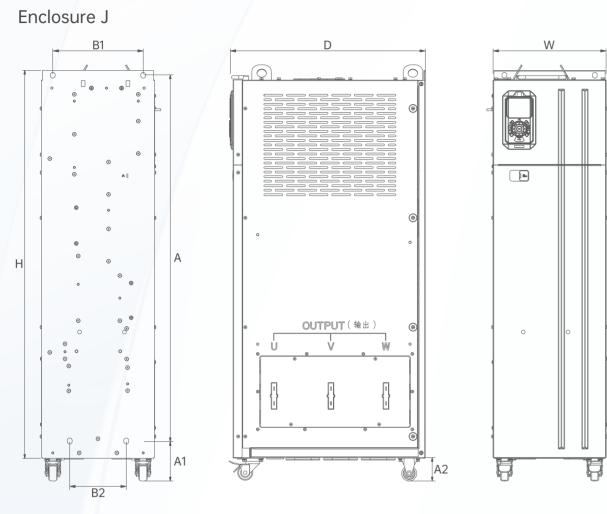
Enclosure	Drive model	A (mm)	B1 (mm)	B2 (mm)	H (mm)	W (mm)	D (mm)	Mounting hole diameter (mm)
F	MV800L-4T30B MV800L-4T37B	412	196	196	424	220	229	7


Enclosure G



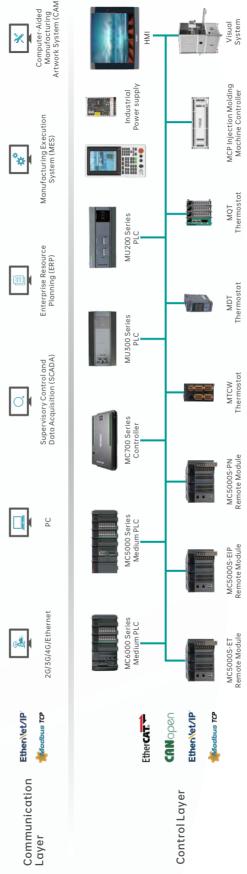
Enclosure	Drive model	A (mm)	B1 (mm)	B2 (mm)	H (mm)	W (mm)	D (mm)	Mounting hole diameter (mm)
G	MV800L-4T45B MV800L-4T55B MV800L-4T75B	542	190	190	560	260	255	9


Enclosure H



Enclosure	Drive model	A (mm)	B1 (mm)	B2 (mm)	H (mm)	W (mm)	D (mm)	Mounting hole diameter (mm)
Н	MV800L-4T90B MV800L-4T110B	539	230	230	560	300	315	10

Enclosure I


Enclosure	Drive model	A (mm)	B1 (mm)	B2 (mm)	H (mm)	W (mm)	D (mm)	Mounting hole diameter (mm)
I	MV800L-4T132 MV800L-4T160	875	230	230	898	310	429	10

Enclosure	Drive model	A (mm)	A1 (mm)	A2 (mm)	B1 (mm)	B2 (mm)	H (mm)	W (mm)	D (mm)
L	MV800L-4T185 MV800L-4T200 MV800L-4T220	970	106	62	240	150	1029	300	520

Ő ۵

Industrial Automation Solutions

P17 MV800L Series AC Drive for Cranes

